Okumaya devam et “Trigonometrik Ceva Teoremi”
Trigonometrik Ceva Teoremi
Okumaya devam et “Trigonometrik Ceva Teoremi”
Geometri teoremlerinin ispatları ve özel sonuçları hakkında birtakım yazıların ve tartışmaların bulunduğu alan.
Herhangi bir $ABC$ üçgeninin çevrel çemberi üzerindeki bir $P$ noktasından, üçgenin kenarlarına (kenar doğrultularına) indirilen dikme ayakları doğrusal / doğrudaş olduğunu gösteriniz. Okumaya devam et “Simson Doğrusu”
$i.$ $ABC$ üçgeninin diklik merkezi $H$, (üçgensel bölgenin) ağırlık merkezi $G$, çevrel çemberinin merkezi $O$ olmak üzere; $H$, $G$, $O$ noktaları doğrusal (Euler Doğrusu) ve $\left | HG \right | = 2\left | GO \right |$ olduğunu gösteriniz.
$ii.$ $P$ noktası $ABC$ üçgeninin dokuz nokta çemberinin merkezi olmak üzere; $H$, $P$, $G$, $O$ noktalarının doğrusal ve aralarında $\left | HP \right |:\left | PG \right |:\left | GO \right | = 3:1:2$ oranı olduğunu gösteriniz.
Herhangi bir $ABC$ üçgeninin yükseklik ayakları $D$, $E$, $F$ ve $H$ diklik merkezi olmak üzere;
$D$, $E$, $F$ noktalarından geçen çemberin, $ABC$ üçgenini kestiği $X$, $Y$, $Z$ noktalarının kenar orta noktalar ve $K$, $L$, $M$ noktalarının sırasıyla $[AH]$, $[BH]$ ve $[CH]$’ın orta noktaları olduğunu gösteriniz.
Köşeleri herhangi bir $ABC$ üçgeninin kenarları üzerinde bulunan $DEF$ üçgeninin çevresinin en küçük olması için, $DEF$ üçgeninin $ABC$ üçgeninin ortik üçgeni olması gerektiğini gösteriniz.